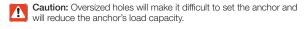
Drop-In Short Internally Threaded Anchor (DIAS)

Drop-in anchors are internally threaded drop-in expansion anchors for use in flush-mount applications in solid base materials. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

Features

- · Lipped edge eliminates need for precisely drilled hole depth
- Hand- and power-setting tools available for fast, easy and economical installation
- Fixed-depth stop bit helps you drill to the correct depth every time
- Short length enables shallow embedment to help avoid drilling into rebar or pre-stressed/post-tensioned cables
- Short drop-in anchors include a setting tool compatible with the anchor to ensure consistent installation


Material: Carbon steel

Coating: Zinc plated

Codes: DOT; Factory Mutual 3017082; Underwriters Laboratories File Ex3605

Installation

- 1. Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth plus 1/8" for flush mounting. Blow the hole clean using compressed air. Overhead installations need not be blown clean.
- 2. Insert designated anchor into hole. Tap with hammer until flush against surface.
- Using the designated drop-in setting tool, drive expander plug toward the bottom of the anchor until shoulder of setting tool makes contact with the top of the anchor.
- 4. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

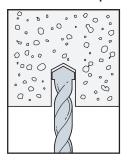
DIAS Short Drop-In

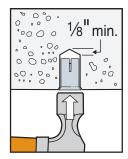
Material Specifications

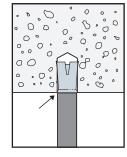
Anchor	Component Material
Component	Zinc-Plated Carbon Steel
Anchor Body	Meets minimum 70,000 psi tensile
Expander Plug	Meets minimum 50,000 psi tensile
Thread	UNC/Coil-thread

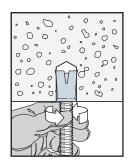
Fixed-Depth Drill Bits for DIAS

Model No.	Drill Bit Diameter (in.)	Drill Depth (in.)	Drop-In Anchor (in.)
MDPL050DIAS	1/2	13/16	3/8
MDPL062DIAS	5/8	1 1/16	1/2


Fixed-Depth Drill Bit


Short Drop-In Anchor Product Data


Rod Size	Model	Drill Bit Diameter	Bolt Threads	Body	Thread	Qua	ntity
(in.)	No.	(in.)	(per in.)	Length (in.)	Length (in.)	Вох	Carton
3/8	DIA37S ¹	1/2	16	3/4	1/4	100	500
1/2	DIA50S ¹	5/8	13	1	5/16	50	200


^{1.} A dedicated setting tool is included with each box of DIA37S and DIA50S.

Installation Sequence

Drop-In Short (DIAS) Design Information — Concrete

Allowable Tension and Shear Loads for %" and ½" Short Drop-In Anchor in Sand-Lightweight Concrete Fill over Steel Deck

IBC	1	→	*

	Rod	Drill	Emb.	Tension Critical	Shear Critical	Critical	Install Thro	ugh the Lower Flute $f'_c \ge 3,000$ psi Co		Steel Deck,
Model No.	Size	Bit Dia.	Depth	End	End	Spacing	Tensio	n Load	Shear	Load
	(in.)	(in.)	(in.)	Distance (in.)	Distance (in.)	(in.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)
DIA37S	3/8	1/2	3/4	6	7	8	1,345	335	1,650	410
DIA50S	1/2	5/8	1	8	9%	10%	1,710	430	2,070	515

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 152.
- 4. Anchors were installed with a 1" offset from the centerline of the flute.

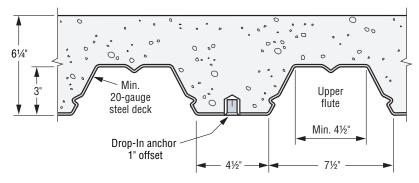


Figure 1. Lightweight Concrete over Steel Deck

Allowable Tension and Shear Loads for %" and ½" Short Drop-In Anchor in Normal-Weight Concrete

		Drill		Tension	Shear		Normal	-Weight Cor	ocrete, f' _c ≥	2500 psi	Normal	-Weight Con	crete, f' _c ≥	4,000 psi
Model	Rod Size	Bit	Emb. Depth	Critical Edge	Critical Edge	Critical Spacing	Tensio	on Load	Shea	r Load	Tensio	on Load	Shea	r Load
No.	(in.)	Dia. (in.)	(in.)	Distance (in.)			Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)
DIA37S	3/8	1/2	3/4	41/2	51/4	3	1,500	375	2,275	570	2,170	540	3,480	870
DIA50S	1/2	5/8	1	6	7	4	2,040	510	3,225	805	3,420	855	5,175	1,295

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 151.
- 4. Allowable loads may be linearly interpolated between concrete strengths.

Allowable Tension and Shear Loads for %" and ½" Short Drop-In Anchor in Hollow-Core Concrete Panel

		Drill		Tension	Shear		Ho	ollow Core Concrete	e Panel, f' _c ≥ 4,000	psi
Model	Rod Size	Bit	Emb. Depth	Critical Edge	Critical Edge	Critical Spacing	Tensio	n Load	Shear	Load
No.	(in.)	Dia. (in.)	(in.)	Distance (in.)	Distance (in.)	istance (in.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)
DIA37S	3/8	1/2	3/4	41/2	51/4	3	1,860	465	3,310	825
DIA50S	1/2	5/8	1	6	7	4	2,650	660	4,950	1,235

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 151.
- 4. Allowable loads may be linearly interpolated between concrete strengths.

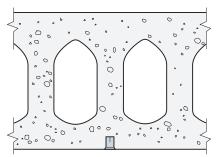


Figure 2. Hollow-Core Concrete Panel (anchor can be installed below web or hollow core)

Drop-In Short (DIAS) Design Information — Concrete

Allowable Load-Adjustment Factors for Short Drop-In Anchors in Normal-Weight Concrete: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge Distance Tension (f_c)

	Size	3/8	1/2
Edge Dist.	C _{Cr}	41/2	6
c _{act} (in.)	C _{min}	2%	31/2
()	f _{cmin}	0.65	0.65
2%		0.65	
3		0.72	
3½		0.81	0.65
4		0.91	0.72
4%		0.98	0.77
41/2		1.00	0.79
5			0.86
51/4			0.90
5½			0.93
6			1.00

Edge Distance Shear (f.)

	Size	3/8	1/2
Edge Dist.	C _{cr}	51/4	7
c _{act} (in.)	C _{min}	25/8	31/2
(111.)	f _{cmin}	0.45	0.45
25/8		0.45	
3		0.53	
31/2		0.63	0.45
4		0.74	0.53
4%		0.82	0.59
41/2		0.84	0.61
5		0.95	0.69
51/4		1.00	0.73
5½			0.76
6			0.84
6½			0.92
7			1.00

- 1. c_{act} = actual edge distance at which anchor is installed (inches).
- 2. c_{CC} = critical edge distance for 100% load (inches).
- 3. c_{min} = minimum edge distance for reduced load (inches).
- 4. $f_{\rm C}=$ adjustment factor for allowable load at actual edge distance.
- 5. f_{CCF} adjustment factor for allowable load at critical edge distance. f_{CCF} is always = 1.00.
- 6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.
- 7. $f_C = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

- The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- Reduction factors for multiple edges or spacing are multiplied together.

Spacing Tension and Shear (f_s)

	Size	3/8	1/2
Sact	S_{cr}	3	4
s _{act} (in.)	S_{min}	1½	2
	f _{smin}	0.50	0.50
1 1/2		0.50	
2		0.67	0.50
21/2		0.83	0.63
3		1.00	0.75
3½			0.88
4			1.00

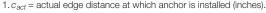
- 1. s_{act} = actual spacing distance at which anchors are installed (inches).
- 2. s_{cr} = critical spacing distance for 100% load (inches).
- 3. s_{min} = minimum spacing distance for reduced load (inches).
- 4. f_s = adjustment factor for allowable load at actual spacing distance.
- 5. f_{SCT} = adjustment factor for allowable load at critical spacing distance. f_{SCT} is always = 1.00.
- 6. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 7. $f_S = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

Drop-In Short (DIAS) Design Information — Concrete

Allowable Load-Adjustment Factors for Short Drop-in Anchors in Sand-Lightweight Concrete over Steel Deck: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.


Edge Distance Tension (f_c)

F.d.e.	Size	3/8	1/2
Edge Dist.	C _{Cr}	6	8
c _{act} (in.)	C _{min}	31/2	43/4
(111.)	f _{cmin}	0.65	0.65
31/2		0.65	
4		0.72	
41/2		0.79	
43/4		0.83	0.65
5		0.86	0.68
51/2		0.93	0.73
6		1.00	0.78
61/2			0.84
7			0.89
71/2			0.95
8			1.00

See notes below.

Edge Distance Shear (f_a)

F.1	Size	3/8	1/2
Edge Dist.	C _{cr}	7	9%
c _{act} (in.)	C _{min}	31/2	43/4
(111.)	f _{cmin}	0.45	0.45
31/2		0.45	
4		0.53	
41/2		0.61	
43/4		0.65	0.45
5		0.69	0.48
5½		0.76	0.54
6		0.84	0.60
6½		0.92	0.66
7		1.00	0.72
7½			0.78
8			0.84
81/2			0.90
9			0.96
9%			1.00

 $^{2.}c_{cr}$ = critical edge distance for 100% load (inches).

- 4. The load adjustment factor ($f_{\rm c}$ or $f_{\rm s}$) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- Reduction factors for multiple edges or spacing are multiplied together.

Spacing Tension and Shear (f_s)

S _{act} (in.)	Size	3/8	1/2
	S _{cr}	8	10%
	Smin	4	51⁄4
	f _{smin}	0.50	0.50
4		0.50	
41/2		0.56	
5		0.63	
51/4		0.66	0.50
6		0.75	0.57
61/2		0.81	0.62
7		0.88	0.66
71/2		0.94	0.71
8		1.00	0.76
81/2			0.80
9			0.85
91/2			0.90
10			0.94
10%			1.00

- 1. s_{act} = actual spacing distance at which anchors are installed (inches).
- $2. s_{cr}$ = critical spacing distance for 100% load (inches).
- 3. s_{min} = minimum spacing distance for reduced load (inches).
- 4. f_s = adjustment factor for allowable load at actual spacing distance.
- 5. f_{SCT} = adjustment factor for allowable load at critical spacing distance. f_{SCT} is always = 1.00.
- 6. $f_{\rm smin}$ = adjustment factor for allowable load at minimum spacing distance.
- 7. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

 $^{3.} c_{min} = minimum edge distance for reduced load (inches).$

^{4.} f_C = adjustment factor for allowable load at actual edge distance.

^{5.} f_{CCT} = adjustment factor for allowable load at critical edge distance. f_{CCT} is always = 1.00.

^{6.} f_{cmin} = adjustment factor for allowable load at minimum edge distance.

^{7.} $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$