C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

ET-3G™ Epoxy Adhesive

ET-3G is an epoxy-based, 1:1 ratio, two-component system ideal for general anchoring of threaded rod and rebar into concrete (cracked and uncracked) and masonry (cracked and uncracked).

Features

- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete and masonry
- Ideal for general doweling and threaded rod applications
- Two-year shelf life for unopened cartridges stored between 45°F (7°C) and 90°F (32°C)

Product Information

Mix Ratio/Type	1:1 epoxy
Mixed Color	Teal
Base Materials	Concrete and masonry — cracked and uncracked
Base Material Conditions	Dry, water-saturated
Anchor Type	Threaded rod or rebar
Substrate Installation Temperature	50°F (4°C) to 110°F (43°C)
In-Service Temperature Range	-40°F (-40°C) to 150°F (65°C)
Storage Temperature	45°F (7°C) and 90°F (32°C)
Shelf Life	24 months
Volatile Organic Compound (VOC)	3 g/L
Chemical Resistance	See pp. 242–243
Manufactured in the US using global r	materials

Test Criteria

ET-3G has been tested in accordance with ICC-ES AC308, AC58, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

Concrete — ICC-ES ESR pending (including post-installed rebar connections, City of LA and Florida Building Code); FL15730.

Masonry — ICC-ES ESR pending.

ASTM C881 and AASHTO M235 - Types I/IV and II/V, Grade 3, Class C.

 $\mbox{UL Certification} - \mbox{CDPH Standard Method v1.2}.$

NSF/ANSI/CAN 61 (216 in. 2 / 1,000 gal.)

Installation Instructions

Installation instructions are located at the following locations: pp. 48–51; product packaging; or **strongtie.com/et3g**.

• Hole cleaning brushes are located on p. 52.

ET-3G Cartridge System

	Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing Nozzle ³
	ET3G10⁴	8.5	Single	12	CDT10S	
	ET3G22-N⁴	22	Side-by-Side	-by-Side 10 EDT22S, EDTA22P, EDTA2		EMN22I
靊	ET3G56	56	Side-by-Side	6	EDTA56P	

- 1. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.
- 2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at **strongtie.com**.
- 3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair ET-3G adhesive performance.
- 4. One EMN22I mixing nozzle and one nozzle extension are supplied with each cartridge.
- 5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

ET-3G Adhesive

ET-3G™ Epoxy Adhesive

SIMPSON Strong-Tie

ET-3G Cure Schedule

Base Materia	l Temperature	Gel Time	Cure Time
°F	°C	(minutes)	(hr.)
50	10	100	72
60	16	75	48
70	21	50	24
90	32	30	24
110	43	18	24

For water-saturated concrete, the cure times must be doubled.

ET-3G Typical Properties

	Promoute	Class C	Test
	Property	(>60°F)	Method
Consistency		Non-sag	ASTM C881
	Hardened to Hardened Concrete, 2-Day Cure ¹	2,600 psi	
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	2,900 psi	ASTM C882
	Fresh to Hardened Concrete, 14-Day Cure ²	2,000 psi	
Compressive Yield Strength, 7-D	ay Cure ¹	13,000 psi	ASTM D695
Compressive Modulus, 7-Day Cu	ıre ¹	580,000 psi	ASTM D695
Heat Deflection Temperature, 7-	Day Cure ²	132°F (56°C)	ASTM D648
Glass Transition Temperature, 7-	Day Cure ²	124°F (51°C)	ASTM E1356
Decomposition Temperature, 24	-Hour Cure ²	500°F (260°C)	ASTM E2550
Water Absorption, 24-Hours, 7-D	Day Cure ²	0.15%	ASTM D570
Shore D Hardness, 24-Hour Cure	9 ²	84	ASTM D2240
Linear Coefficient of Shrinkage,	7-Day Cure ²	0.002 in./in.	ASTM D2566
Coefficient of Thermal Expansion	²	2.4 x 10 ⁻⁵ in./in.°F	ASTM C531

- 1. Material and curing conditions: 60° ± 2°F.
- 2. Material and curing conditions: 73° \pm 2°F.

ET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹

Characteristic		Cumbal	Units	Nominal Anchor Diameter (in.) / Rebar Size								
Glididelelistic		Symbol	UIIILS	% / #3	1/2 / #4	% / #5	3/4 / #6	7⁄8 / # 7	1 / #8	1¼/#10		
			Insta	llation Inform	ation							
Drill Bit Diameter		d _{hole}	in.	1/2	5/8	3/4	7/8	1	11/8	1%		
Maximum Tightening Torque		T _{inst}	ftlb.	10	20	30	45	60	80	125		
Permitted Embedment Depth Range	Minimum	h _{ef}	in.	23/8	23/4	31/8	31/2	3¾	4	5		
remitted Embedment Depth Nange	Maximum	h _{ef}	in.	71/2	10	12½	15	17½	20	25		
Minimum Concrete Thickness		h _{min}	in.		h_{ef} + 5 d_{hole}							
Critical Edge Distance ²		Cac	in.				See footnote 2	2				
Minimum Edge Distance	C _{min}	in.		23/4								
Minimum Anchor Spacing		S _{min}	in.				3			6		

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

 $[h/h_{ef}] \leq 2.4$

 $\tau_{\textit{k,uncr}} = \text{the characteristic bond strength in uncracked concrete, given in the tables that follow} \leq k_{\textit{uncr}} (\textit{(h}_{\textit{ef}} \times \textit{f'}_{\textit{c}})^{0.5} / (\pi \times \textit{d}_{\textit{hole}}))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

^{2.} $c_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

ET-3G™ Design Information — Concrete

ET-3G Tension Strength Design Data for Threaded Rod^{1,11}

							Nominal A	nchor Dia	meter (in.)	
	Characteristic		Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
		Steel St	rength in T	ension	•		•	•			•
	Minimum Tensile Stress Area		Ase	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel — ASTM F1554, G	Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel — ASTM A193, Gr	rade B7			9,750	17,750	28,250	41,750	57,750	75,750	121,125
Threaded Rod	Tension Resistance of Steel — Type 410 Stainl (ASTM A193, Grade B6)	less	N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
	Tension Resistance of Steel — Types 304 and (ASTM A193, Grade B8 and B8M)	316 Stainless			4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor — Steel Failure		φ	_			•	0.757			
	Concrete Brea	kout Strength i	n Tension (2,500 p	si ≤ f' _C ≤ 8	B,000 psi)	10				
Effectiveness F	actor — Uncracked Concrete		k _{uncr}	_				24			
Effectiveness F	actor — Cracked Concrete		k _{cr}	_				17			
Strength Reduc	tion Factor — Breakout Failure		φ	_				0.657			
	Bond St	trength in Tensi	on (2,500 p	osi ≤ f'c	≤ 8,000 p	osi)10					
	Characteristic Bond Strength ⁵		$ au_{k,uncr}$	psi			See stror	ngtie.com	for values		
Uncracked Concrete 2,3,4	Permitted Embedment Depth Range	Minimum	h.	in.	2%	2¾	31/8	3½	3¾	4	5
		Maximum	h _{ef}	111.	71/2	10	121/2	15	17½	20	25
	Characteristic Bond Strength ^{5,8,9}	Characteristic Bond Strength ^{5,8,9}		psi	See strongtie.com for values						
Cracked Concrete 2,3,4	Permitted Embedment Depth Range	Minimum	h .	in.	3	4	5	6	7	8	10
	Permitted Embedment Deptir Nange	Maximum	- h _{ef}	111.	71/2	10	12½	15	17½	20	25
	Bond Strength in Tension —	Bond Strength	Reduction	Factors	s for Conti	inuous Sp	ecial Insp	ection			
Strength Reduc	etion Factor — Dry Concrete		φ _{dry, ci}	_	0.657						
Strength Reduc	tion Factor — Water-Saturated Concrete — $h_{ef} \le$	12d _a	φ _{sat,ci}		0.9	55 ⁷			0.45^{7}		
Additional Factor	or for Water-Saturated Concrete — $h_{ef} \le 12d_a$		K _{sat,ci} 6	_			1			0.	84
Strength Reduc	tion Factor — Water-Saturated Concrete — h _{ef} >	> 12d _a	φ _{sat,ci}	_				0.457			
Additional Factor	or for Water-Saturated Concrete — $h_{ef} > 12d_a$		k _{sat,ci} 6	_				0.57			
	Bond Strength in Tension –	– Bond Strengt	h Reductio	n Facto	rs for Per	iodic Spec	cial Inspec	tion			
Strength Reduc	tion Factor — Dry Concrete		φ _{dry,pi}	_				0.557			
Strength Reduc	tion Factor — Water-Saturated Concrete — h _{ef} <	12d _a	φ _{sat,pi}	_				0.457			
Additional Factor	or for Water-Saturated Concrete — h _{ef} ≤ 12d _a		K _{sat,pi} 6	_		1		0.93		0.	71
Strength Reduc	ction Factor — Water-Saturated Concrete — h _{ef} >	> 12d _a	φ _{sat,pi}	_				0.457			
Additional Factor	or for Water-Saturated Concrete — h _{ef} > 12d _a		K _{sat,pi} 6	_				0.48			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature = 150°F, Maximum long-term temperature = 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term temperatures are roughly constant over significant periods of time.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.
- 6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .
- 7. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 8. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for %" anchors must be multiplied by $\alpha_{N,\text{Seis}} = 0.80$.
- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by $\alpha_{N,\text{seis}} = 0.92$.
- 10. The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'_c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.
- 11. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

ET-3G™ Design Information — Concrete

ET-3G Tension Strength Design Data for Rebar^{1,9}

	01 1 1 1				Rebar Size						
	Characteristic		Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Stee	el Strength in	Tension							•
	Minimum Tensile Stress Area		A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Rebar	Tension Resistance of Steel — (ASTM A615 Grade 60)	- Rebar	N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700
	Strength Reduction Factor — S	Steel Failure	φ	_				0.657			
	Concrete B	reakout Stren	gth in Tension	(2,500 psi	$\leq f_{C}^{\prime} \leq 8$,	000 psi) ⁸					
Effectiveness Factor — Uno	cracked Concrete		<i>k</i> _{uncr}	_				24			
Effectiveness Factor — Cra	cked Concrete		<i>k</i> _{cr}	_				17			
Strength Reduction Factor -	— Breakout Failure		φ	_				0.657			
	Bono	d Strength in 1	Tension (2,500	psi ≤ f' _C ≤	8,000 ps	i) ⁸					
		$\tau_{k,uncr}$	psi			See stror	ngtie.com	for values			
Uncracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	2%	2¾	31/8	31/2	3¾	4	5
		Maximum			71/2	10	12½	15	17½	20	25
	Characteristic Bond Strength ⁵	$ au_{k,cr}$	psi			See stror	ngtie.com	for values			
Cracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h	in	3	4	5	6	7	8	10
		Maximum	h _{ef}	in.	71/2	10	12½	15	171/2	20	25
	Bond Strength in Tension	— Bond Strer	ngth Reduction	n Factors f	or Continu	ous Spec	ial Inspec	ction			
Strength Reduction Factor -	— Dry Concrete		φ _{dry,ci}	_				0.65^{7}			
Strength Reduction Factor -	— Water-Saturated Concrete – h _{ef}	≤ 12d _a	φ _{sat,ci}	_	0.	55 ⁷			0.457		
Additional Factor for Water-	Saturated Concrete $-h_{ef} \le 12d_a$		K _{sat,ci} 6	_			1			0.	84
Strength Reduction Factor -	— Water-Saturated Concrete – h _{ef}	> 12d _a	φsat,ci	_				0.45^{7}			
Additional Factor for Water-	Saturated Concrete – h _{ef} > 12d _a		K _{sat,ci} 6	_				0.57			
	Bond Strength in Tension	n — Bond Stre	ength Reducti	on Factors	for Perio	dic Specia	al Inspecti	ion			
Strength Reduction Factor -	— Dry Concrete		φ _{dry,pi}	_				0.55^{7}			
Strength Reduction Factor -	— Water-Saturated Concrete – h _{ef}	≤ 12d _a	φ _{sat,pi}	_				0.457			
Additional Factor for Water-	Saturated Concrete – h _{ef} ≤ 12d _a		K _{sat,pi} 6	_		1		0.93		0.	71
Strength Reduction Factor -	— Water-Saturated Concrete – h _{ef}	> 12d _a	φ _{sat,pi}	_				0.457			
Additional Factor for Water-	Saturated Concrete – h _{ef} > 12d _a		K _{sat,pl} 6	_				0.48			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.
- $2. Temperature \ {\it Range: Maximum short-term temperature = 150°F, Maximum long-term temperature = 110°F.}$
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term temperatures are roughly constant over significant periods of time.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.
- 6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .
- 7. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 8. The values of f_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f_c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.
- For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

ET-3G[™] Design Information — Concrete

ET-3G Shear Strength Design Data for Threaded Rod¹

	Characteristic		Units	Nominal Anchor Diameter (in.)							
	Glaracteristic	Symbol	Oiiito	3/8	1/2	5/8	3/4	7/8	1	11/4	
	Steel	Strength	in Shea	ır					'		
	Minimum Shear Stress Area	A _{se}	in.²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720	
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675	
Threaded Rod	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955	
	Shear Resistance of Steel — Types 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140	
Hou	Reduction for Seismic Shear — ASTM F1554, Grade 36			0.87	0.78		0.	68		0.65	
	Reduction for Seismic Shear — ASTM A193, Grade B7			0.87	0.78		0.	68		0.65	
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)	$\alpha_{V,seis}^3$	_	0.69	0.82	0.75 0.83			0.83	0.72	
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M)			0.69	0.82		0.75		0.83	0.72	
	Strength Reduction Factor — Steel Failure	φ	_	0.65^{2}							
	Concrete Br	eakout S	trength i	in Shear							
Outside D	iameter of Anchor	d _o	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load Bear	ring Length of Anchor in Shear	ℓ_e	in.		Mir	n. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter		
Strength F	Reduction Factor — Breakout Failure	φ	_				0.702				
	Concrete F	ryout Str	ength in	Shear							
Coefficien	t for Pryout Strength	k _{cp}	_		1.0	o for $h_{ef} < 2$	2.50"; 2.0 1	for $h_{ef} \ge 2.5$	50"		
Strength F	Reduction Factor — Pryout Failure	φ	_				0.702				

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

^{2.} The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

^{3.} The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$ for the corresponding anchor steel type.

ET-3G[™] Design Information Concrete

ET-3G Shear Strength Design Data for Rebar¹

	Characteristic	Cumbal	Units	Rebar Size							
	Gilai delei isule	Symbol	UIIILS	#3	#4	#5	#6	#7	#8	#10	
	:	Steel Strenç	yth in Shear	r							
	Minimum Shear Stress Area		in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23	
Rebar	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420	
nebai	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	$\alpha_{V,seis}$ ³	_	0.85	0.88	0.	84	0.	77	0.59	
	Strength Reduction Factor — Steel Failure	φ	_	- 0.60 ²							
	Concre	te Breakout	Strength in	n Shear							
Outsid	e Diameter of Anchor	d_0	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-E	Bearing Length of Anchor in Shear	ℓ_e	in.		Mir	i. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter		
Streng	th Reduction Factor — Breakout Failure	φ	_				0.70^{2}				
	Concr	ete Pryout	Strength in	Shear							
Coeffic	cient for Pryout Strength	K _{cp}	_		1.0) for $h_{ef} < 2$	2.50"; 2.0 1	for $h_{ef} \ge 2.5$	50"		
Streng	th Reduction Factor — Pryout Failure	φ	_				0.702				

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

For additional load tables, visit strongtie.com/et3g.

Adhesive Cartridge Estimator

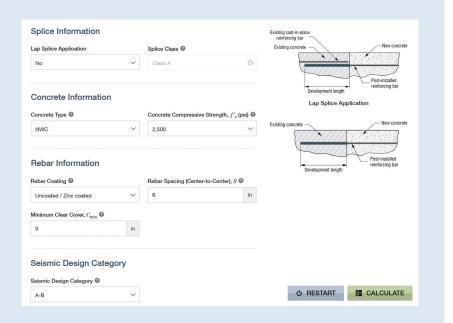
Simpson Strong-Tie® Adhesive Cartirdge Estimator software will help you easily estimate how much adhesive you will need for your project, including threaded rod and rebar doweling, and crack injection.

^{2.} The tabulated value of ∮ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

^{3.} The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$.

ET-3G™ Design Information -- Concrete

ET-3G Development Length for Rebar Dowels



			Development Length, in. (mm)								
Rebar Size	Drill Bit Diameter (in.)	Clear Cover in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete				
#3 (9.5)	1/2	1½ (38)	12 (305)								
#4 (12.7)	5%	1½ (38)	14.4 (366)	14 (356)	12 (305)	12 (305)	12 (305)				
#5 (15.9)	3/4	1½ (38)	18 (457)	17 (432)	14.2 (361)	12 (305)	12 (305)				
#6 (19.1)	7/8	1½ (38)	21.6 (549)	20 (508)	17.1 (434)	14 (356)	13 (330)				
#7 (22.2)	1	3 (76)	31.5 (800)	29 (737)	25 (635)	21 (533)	18 (457)				
#8 (25.4)	11/8	3 (76)	36 (914)	33 (838)	28.5 (724)	24 (610)	21 (533)				
#9 (28.7)	1%	3 (76)	40.5 (1,029)	38 (965)	32 (813)	27 (686)	23 (584)				
#10 (32.3)	1%	3 (76)	45 (1,143)	42 (1,067)	35.6 (904)	30 (762)	26 (660)				
#11 (35.8)	13/4	3 (76)	51 (1,295)	47 (1,194)	41 (1,041)	33 (838)	29 (737)				

- 1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 12, as applicable. The value of f'c used to calculate development lengths shall not exceed 2,500 psi in SDC C through F.
- 2. Rebar is assumed to be ASTM A615 Grade 60 or A706 ($f_y = 60,000$ psi). For rebar with a higher yield strength, multiply tabulated values by f_y / 60,000 psi.
- 3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.
- 4. Tabulated values assume bottom cover of less than 12" cast below rebars (Ψ_t = 1.0).
- 5. Uncoated repar must be used
- 6. The value of K_{tr} is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 318-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

Rebar **Development** Length **Calculator**

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-19 / ACI 318-14.

Masonry

ET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Face of Wall

Installation Information	Cumbal	Units	Nominal Rod Diameter / Rebar Size							
instaliation illiorniation	Symbol	Units	%" / #3	1⁄2" / #4	5%" / #5	34" / #6				
Drill Bit Diameter — Threaded Rod	d _o	in.	7/16	9/16	11/16	7/8				
Drill Bit Diameter — Rebar	d _o	in.	1/2	5/8	3/4	7/8				
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3	3				

ET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Top of Wall

Installation Information	Symbol	Units	Nominal Rod Diameter / Rebar Size		
			1⁄2" / #4	%" / #5	7∕8"
Drill Bit Diameter — Threaded Rod	d_{o}	in.	9/16	11/16	1
Drill Bit Diameter — Rebar	d _o	in.	5/8	3/4	_
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3

ET-3G Epoxy Anchor Installation Information — Ungrouted CMU Construction

Installation Information	Symbol	Units	Nominal Rod Diameter		
			3%"	1/2"	5/8"
Drill Bit Diameter	d _o	in.	9/16	3/4	7/8
Embedment Depth	h _{ef,min}	in.	3½	3½	3½

Please see the ET-3G product page at strongtie.com and ICC-ES ESR Report for load data.