Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

Titen Turbo™ Concrete and Masonry Screw Anchor

SIMPSON Strong-Tie

The Titen Turbo screw anchor features an innovative Torque Reduction Channel to trap drilling dust where it can't obstruct thread action, significantly reducing binding, stripping, and snapping without compromising strength. The patented reverse thread design enables smooth driving with less torque while providing superior holding power. The Torque Reduction Channel also allows more space for dust to help prevent anchors from bottoming out in smaller-diameter screw holes. The Titen Turbo screw anchors feature a serrated leading edge to cut into concrete or masonry, and a pointed tip for fast, easy installation in wood-to-concrete and wood-to-wood anchoring applications.

Features

Mechanical Anchors

- Patent-pending Torque Reduction Channel that displaces dust where it can't obstruct the thread action, reducing the likelihood of binding in the hole
- Availability with either a hex head or, for a flush profile, a 6-lobe-drive countersunk flat head
- The 6-lobe drive's larger contact area provides better bit grip for reduced cam-outs, more torque, better performance and longer bit life
- 6-lobe bit included in packaging for countersunk flat head version
- Superior tension load performance compared to leading competitors in the market
- Matched-tolerance bit not required; use a standard ANSI drill bit for installation
- · Serrated screw point for easier starts when fastening wood
- Designed for installation with an impact driver or cordless drill. Installation using the Titen Turbo Installation Tool is recommended.
- Use in dry interior environments only
- Code listed in accordance with ICC-ES AC193 for uncracked concrete and ICC-ES AC106 for masonry applications without cleaning dust from predrilled holes

Codes: IAPMO UES ER-712 (uncracked concrete) (City of LA Supplement within ER-712);

IAPMO UES ER-716 (masonry) (City of LA Supplement within ER-716); FL16230 (concrete and masonry)

Material: Carbon steel

Coating: Zinc plated with baked ceramic coating

Installation Sequence

Versatile Applications

Sliding door track installation

Window frames

Titen Turbo Flat Head Screw Patent Pending

Titen Turbo Hex-Head Screw Patent Pending

Furring strips

Blue Titen Turbo Product Data (3/16" diameter)

Size	Head	Model	Drill Bit Dia.	Qua	ntity
(in.)	Style	No.	(in.)	Pack	Carton
3⁄16 X 1 1⁄4		TNT18114H		100	1,600
3⁄16 X 1 3⁄4	1⁄4" hex	TNT18134H		100	500
3⁄16 X 21⁄4		TNT18214H	5/22	100	500
³ ⁄16 X 2 ³ ⁄4		TNT18234H	732	100	500
³ ⁄16 Х З ¼		TNT18314H		100	400
³ ⁄16 Х З¾		TNT18334H		100	400
3⁄16 X 1 1⁄4		TNT18114TF	5/32	100	1,600
3⁄16 X 1 3⁄4		TNT18134TF		100	500
3⁄16 X 21⁄4	TOF 6 Jobo flat	TNT18214TF		100	500
³ ⁄16 X 2 ³ ⁄4	120 0-IODE Hat	TNT18234TF		100	500
3⁄16 X 31⁄4		TNT18314TF		100	400
3⁄16 X 33⁄4		TNT18334TF		100	400

Blue Titen Turbo Product Data (1/4" diameter)

Size	Head Model		Drill Bit Dia.	Quantity		
(in.)	Style	No.	(in.)	Pack	Carton	
1⁄4 x 1 1⁄4		TNT25114H		100	1,600	
1⁄4 x 1 3⁄4		TNT25134H		100	500	
1⁄4 x 21⁄4		TNT25214H]	100	500	
1⁄4 X 23⁄4]	TNT25234H]	100	500	
1⁄4 x 31⁄4	5⁄16" hex	TNT25314H	3⁄16	100	400	
1⁄4 x 3¾		TNT25334H		100	400	
1⁄4 x 4		TNT25400H		100	400	
1⁄4 x 5		TNT25500H		100	400	
1⁄4 x 6]	TNT25600H		100	400	
1⁄4 x 1 1⁄4		TNT25114TF		100	1,600	
1⁄4 x 1 3⁄4		TNT25134TF		100	500	
1⁄4 x 21⁄4		TNT25214TF		100	500	
1⁄4 x 23⁄4	T30 6-lobe flat	TNT25234TF	3⁄16	100	500	
1⁄4 x 31⁄4		TNT25314TF		100	400	
1⁄4 x 3¾		TNT25334TF		100	400	
1⁄4 x 4	-	TNT25400TF		100	400	

White Titen Turbo Product Data (6-Lobe Flat Head)

Size	Head	Model	Drill Bit Dia.	Qua	ntity
(in.)	Style	No.	(in.)	Pack	Carton
3⁄16 X 1 1⁄4		TNTW18114TF		100	1,600
3⁄16 X 1 3⁄4	T25 6-lobe flat	TNTW18134TF		100	500
³ ⁄16 Х 21⁄4		TNTW18214TF	5/	100	500
³ ⁄16 X 2 ³ ⁄4		TNTW18234TF	732	100	500
³ ⁄16 Х З ¼		TNTW18314TF		100	400
³ ⁄16 Х З¾		TNTW18334TF		100	400
1⁄4 x 1 1⁄4		TNTW25114TF	3⁄16	100	1,600
1⁄4 x 1 3⁄4		TNTW25134TF		100	500
1⁄4 X 2 1⁄4	T20 6 Jobo flat	TNTW25214TF		100	500
1⁄4 x 23⁄4	150 0-10be liat	TNTW25234TF		100	500
1⁄4 X 3 1⁄4	-	TNTW25314TF		100	400
1⁄4 x 3¾		TNTW25334TF		100	400

Silver Titen Turbo Product Data (6-Lobe Flat Head)

Size (in.)	Head Style	Model No.	Drill Bit Dia. (in.)	Quantity
3⁄16 X 1 3⁄4		TNTS18134TFB		1,000
3⁄16 X 23⁄4	T25 6-lobe flat	TNTS18234TFB	5/32	1,000
3⁄16 X 33⁄4		TNTS18334TFB		1,000
1⁄4 x 23⁄4	T20 6 Jobo flat	TNTS25234TFB	34-	1,000
1⁄4 x 31⁄4	150 0-IODE Hat	TNTS25314TFB	916	1,000

Titen Turbo Screw Anchor – Installation Tool

Six-piece kit includes:

- 6-lobe bit socket
- T25 and T30 bits
- 1/4" and 5/16" hex sockets
- Canvas storage bag

Titen Turbo Installation Tool

Model	Quantity			
No.	Clamshell	Carton		
TNTINSTALLKIT	1	4		

Titen Turbo Screw Anchor Installation Kit

Titen Turbo Screw Anchor — Drill Bits

Size	Model	Model Use With		Qua	ntity
(in.)	No.	Screw	Length	Box	Carton
5⁄32 X 3 ½	MDB15312		To 1 ¾		
5⁄32 X 4 1⁄2	MDB15412	^{3⁄16} " diameter	To 3 ¼	12	48
5⁄32 X 5 ½	MDB15512		To 4		
3⁄16 X 3 ½	MDB18312		To 1 ¾		
³ ⁄ ₁₆ x 4 ½	MDB18412	1⁄4" diameter	To 3 1⁄4	12	48
³ ⁄16 X 5 ½	MDB18512		To 4		

Titen Turbo Screw Anchor — SDS-plus® Drill Bits

Size (in.)	Model No.	For Screw Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)
5∕32 X 6	MDPL01506H	3/	3 1/8	6
5∕32 X 7	MDPL01507H	9/16	4 1⁄8	7
³ ⁄16 Х 5	MDPL01805H		23⁄8	5
³∕16 X 6	MDPL01806H	1⁄4	3 1/8	6
³ ⁄16 Х 7	MDPL01807H	-	4 1/8	7

Titen drivers are sold individually.

Titen Turbo Screw Drill Bit/Driver - Bulk Packs*

Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	For Screw Diameter (in.)	Model No.
5/32	41⁄8	7	3⁄16	MDPL01507H-R25
3⁄16	41⁄8	7	1⁄4	MDPL01807H-R25

*SDS-plus shank.

SDS-plus Shank Bit

00000000000000

Titen Turbo Installation Information and Additional Data¹

Characteristic	Sumbol	Unito	Nominal Anchor Diameter (in.)				
	Symbol	UIIIIS	3⁄16	1⁄4			
Installation Information							
Drill Bit Diameter	d	in.	5/32	3⁄16			
Minimum Baseplate Clearance Hole Diameter	d _c	in.	1⁄4	5⁄16			
Minimum Hole Depth	h _{hole}	in.	21⁄4	21⁄4			
Embedment Depth	h _{nom}	in.	1 3⁄4	1¾			
Effective Embedment Depth	h _{ef}	in.	1.25	1.20			
Critical Edge Distance	C _{ac}	in.	3	3			
Minimum Edge Distance	C _{min}	in.	1 3⁄4	13⁄4			
Minimum Spacing	S _{min}	in.	1	2			
Minimum Concrete Thickness	h _{min}	in.	31⁄4	31⁄4			
Additional Data							
Yield Strength	f _{ya}	psi	100,000				
Tensile Strength	f _{uta}	psi	125,000				
Minimum Tensile and Shear Stress Area	A _{se}	in. ²	0.0131	0.0211			

1. The information presented in this table is to be used in conjunction with the design criteria of

ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

Titen Turbo Tension Strength Design Data¹

Characteristic	Symbol	Unito	Nominal Anchor Diameter (in.)		
Gildideteristic	Symbol	Units	3⁄16	1⁄4	
Anchor Category	1, 2 or 3	—		1	
Embedment Depth	h _{nom}	in.	1 3⁄4	1 3⁄4	
Steel	Strength in Tension	n			
Tension Resistance of Steel	N _{sa}	lb.	1,640	2,640	
Strength Reduction Factor — Steel Failure	ϕ_{sa}	—	0.6	65 ²	
Concrete Br	eakout Strength in	Tension			
Effective Embedment Depth	h _{ef}	in.	1.25	1.20	
Critical Edge Distance	C _{ac}	in.	3	3	
Effectiveness Factor — Uncracked Concrete	k _{uncr}	—	2	4	
Modification Factor	$\Psi_{C,N}$	—	1	.0	
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	—	0.65 ³		
Pullout Strength in Tension					
Pullout Resistance Uncracked Concrete $(f'_{c} = 2,500 \text{ psi})^4$	N _p ,uncr	lb.	1,515	1,515	
Strength Reduction Factor — Pullout Failure	ϕ_p	—	0.6	65 ⁵	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The tabulated value of φ_{sa} applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 Section D.4.4.

3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. Condition B applies when supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factor described in ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4.

4. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'c/2500)^{0.23} for 1⁄4" screw anchors. No increase in the characteristic pullout resistance for greater compressive strengths is permitted for 3⁄16" screw anchors.

5. The tabulated value of φ_D applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

SIMPS

Strong-1

Titen Turbo Shear Strength Design Data Into Concrete¹

Characteristic	Symbol	Unito	Nominal Anchor Diameter (in.)			
Gildi deteristic	Symbol	Units	3⁄16	1⁄4		
Anchor Category	1, 2 or 3	—	1			
Embedment Depth	h _{nom}	in.	1 3⁄4	1¾		
Steel Strength in Shear						
Shear Resistance of Steel	V _{sa}	lb.	475	720		
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_	0.60 ²			
	Concrete Breakout St	rength in Shear				
Outside Diameter	d _a	in.	0.129	0.164		
Load Bearing Length of Anchor in Shear	l _e	in.	1.25	1.20		
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_	0.703			
Concrete Pryout Strength in Shear						
Coefficient for Pryout Strength	k _{cp}		1.0			
Strength Reduction Factor — Concrete Pryout Failure	$\phi_{c ho}$	_	0.7	704		

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or

ACI 318-11 Appendix D.

2. The tabulated value of \$\$\phi_8\$ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4.

3. The tabulated value of \$\phi_{CD}\$ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. Condition B applies when supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factor described in ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition A are allowed. If the load combinations of

ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4. 4. The tabulated value of ϕ_{CP} applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4 (c).

Torque Reduction Channel to trap drilling dust where it can't obstruct thread action.

US Patent Pending

SIMPSON

LW

C-A-2021 @ 2021 SIMPSON STRONG-TIE COMPANY INC.

Strong

IBC

Allowable Tension Load for Titen Turbo[™] Screw Anchor Installed in Face of Grouted CMU^{1,2,3}

Anchor Diameter	Embedment Depth	Minimum Dimensions (in.)			Allowable Load
(in.) (in.)	Spacing	Edge	End	(ID.)*	
3⁄16	2	3	37⁄8	37⁄8	267
3⁄16	2	3	1 1⁄2	31⁄8	267
1⁄4	2	4	31/8	31⁄8	393
1⁄4	2	4	1½	37⁄8	343

1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having

reached a minimum f'm of 1,500 psi at time of installation.

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.

3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen Turbo Screw Anchor Installed in Face of Grouted CMU^{1,2,3}

Anchor Diameter (in.)	Embedment Depth (in.)	Minimum Dimensions (in.)			Direction of Loading	Allowable Load
		Spacing	Edge	End	Ť	(ID.) [.]
3⁄16	2	3	31%8	31⁄8	Toward edge, parallel to wall end	218
3⁄16	2	3	1 1/2	31⁄8	Toward wall end, parallel to wall edge	218
1⁄4	2	4	31%	31⁄8	Toward edge, parallel to wall end	342
1⁄4	2	4	1 1⁄2	37⁄8	Toward wall end, parallel to wall edge	283

1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls

having reached a minimum f'm of 1,500 psi at time of installation.

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.

3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Tension Load for Titen Turbo Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

Anchor Diameter	Embedment Depth		Allowable Load			
(in.)	(in.)	Spacing	Edge	End	(lb.) ⁴	
3⁄16	1 1⁄4	3	37⁄8	37⁄8	117	
1⁄4	1 1⁄4	4	37⁄8	37⁄8	117	

1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls

having reached a minimum $\mathrm{f^{\prime}m}$ of 1,500 psi at time of installation.

2. Embedment is the thickness of the face shell.

3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen Turbo Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

Anchor Diameter (in.)	Embedment Depth (in.)	Minimum Dimensions (in.)			Direction of	Allowable Load
		Spacing	Edge	End	Luaulity	(10.)*
3⁄16	1 1⁄4	3	31⁄8	37⁄8	Toward edge, parallel to wall end	164
1⁄4	1 1⁄4	4	31%	37⁄8	Toward edge, parallel to wall end	190

1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls

having reached a minimum f'm of 1,500 psi at time of installation.

2. Embedment is the thickness of the face shell.

3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

SIMPSO

IBC

IBC 1

IBC